
17 Poincaré–Andronov–Hopf bifurcation

I already mentioned that there are no regular methods to study the limit cycles of the systems on the
plane. Probably, one of the most important approaches, together with the Poincaré–Bendixson theory,
is the Poincaré–Andronov–Hopf bifurcation1, which is the only genuinely two dimensional bifurcation
(i.e., it cannot be observed in systems of dimension 1), which can occur in generic two dimensional
autonomous systems depending on one parameter (co-dimension one bifurcation).

Consider the system
ẋ = f(x, α), x(t) ∈ U ⊆ R2 (1)

that depends on a scalar parameter α ∈ R.

Definition 1. A bifurcation of an equilibrium of system (1), for which a pair of purely imaginary
eigenvalues λ1,2 = ±iω0, ω0 > 0, appears, is called the Poincaré–Andronov–Hopf bifurcation, or the
bifurcation of the birth of a limit cycle.

Example 2. Consider the system

ẋ = αx− y − x(x2 + y2),

ẏ = x+ αy − y(x2 + y2).
(2)

This system has the equilibrium x̂0 = (0, 0) for all parameter values α, and the Jacobi matrix of (2)
evaluated at x̂0 is

A := f ′(x̂0) =

[
α −1
1 α

]
.

The eigenvalues of A are
λ1,2(α) = α± i.

Introducing complex variable z = x+ iy, (2) can be rewritten in the complex form

ż = (α+ i)z − z|z|2.

Using the exponential form of the complex numbers z = reiθ, I can rewrite (2) in the polar coordinates
as

ṙ = r(α− r2), θ̇ = 1.

The last system can be easily analyzed since the equations are decoupled. The first equation always
has the equilibrium r̂0 = 0, and, if α > 0, another equilibrium r̂1 =

√
α. The linear analysis shows

that r̂0 = 0 is asymptotically stable if α < 0 and unstable if α > 0. Note that if α = 0 we cannot
analyze the stability of r̂0 = 0 by the linear approximation, however, the trivial equilibrium of ṙ = −r3

is asymptotically stable. For α > 0 another equilibrium r̂1 appears. The second equation describes
the counterclockwise rotation with constant speed. Superposition of these two behaviors yields the
bifurcation diagram of system (2) (see the figure), which shows that for α > 0 an asymptotically stable
unique limit cycle appears.
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1V.I. Arnold writes in his textbook “Geometrical methods in the theory of ordinary differential equations”: “Consid-
ered above theorem was known essentially to Poincaré. An explicit formulation and proof were given by A.A. Andronov.
[...] R.Tom, who I thought this theory in 1965, was advocating it under the name Hopf bifurcation.”
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Figure 1: Supercritical Poincaré–Andronov–Hopf bifurcation

System

ẋ = αx− y + x(x2 + y2),

ẏ = x+ αy + y(x2 + y2),
(3)

can be analyzed in a similar way. This system also has Poincaré–Andronov–Hopf bifurcation for α = 0,
the difference is that the limit cycle exists for α < 0 and it is unstable. For α > 0 there is no limit
cycle, and r̂0 = 0 is unstable. Note that for α = 0 non-hyperbolic equilibrium r̂0 is unstable (see the
figure).

Bifurcation in (2) is called supercritical, the limit cycle exists for positive parameter values (“after”
the bifurcation), whereas the bifurcation in (3) is called subcritical. In the former case the unique stable
equilibrium is replaced with a unique asymptotically stable limit cycle of a small amplitude

√
α, and

the system stays in a neighborhood of r̂0 = 0. This is so-called soft or non-catastrophic loss of stability.
In the latter case, the basin of attraction of r̂0 is bounded by the unstable limit cycle for negative α,

2



α < 0 α = 0 α > 0

x

y

α

Figure 2: Subcritical Poincaré–Andronov–Hopf bifurcation

and if α becomes positive, the system leaves any neighborhood of the origin. This is so-called hard or
catastrophic loss of stability. The type of the Poincaré–Andronov–Hopf bifurcation (soft or hard) is
determined by the stability of the trivial equilibrium at the bifurcation parameter value.

It turns out that the situation in the example above appears in many different systems of the form
(1). Here is a general statement without proof.

Theorem 3. Any system (1) that has an equilibrium x̂ for the parameter values |α−αb| < ϵ for some
ϵ > 0, whose linearization has eigenvalues λ1,2(α) = µ(α)±iω(α) such that µ(αb) = 0, ω(αb) = w0 > 0,
and satisfying the following conditions

dµ

dα
(α)

∣∣∣∣
α=αb

̸= 0, (4)

and
L1(αb) ̸= 0, (5)

experiences the Poincaré–Andronov–Hopf bifurcation. The bifurcation is supercritical if L1(αb) < 0
and subcritical if L1(αb) > 0.
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Remark 4. The statement of the theorem includes the condition L1(αb) ̸= 0 for the first Lyapunov
values L1 at the bifurcation parameter value αb. Moreover, the sign of L1(αb) actually determines
the type of the bifurcation. However, I never explained how to actually calculate L1(αb). This is a
nontrivial computational problem and I skip it in these lectures. The interested reader should consult
an extremely readable account in Kuznetsov’s textbook2. The type of the Poincaré–Andronov–Hopf
bifurcation can be inferred if the stability of the equilibrium x̂ at the bifurcation value α = αb can be
analyzed (e.g., with the help of the Lyapunov functions). Anyway, appearance of purely imaginary
eigenvalues that cross the imaginary axis with non-zero speed should indicate that it is possible to
have a limit cycle somewhere close.

Example 5. To illustrate this theorem, consider the following predator–prey system

Ṅ = rN

(
N

Lp
− 1

)(
1− N

Kp

)
− aNP,

Ṗ = −cP + dNP,

where all the parameters are assumed to be positive, and Lp < Kp. This system can be put in
dimensionless form as

ẋ = x(x− l)(K − x)− xy,

ẏ = −γy + xy,

where 0 < l < K and γ > 0. It is possible to have up to four equilibria:

x̂0 = (0, 0), x̂1 = (l, 0), x̂2 = (K, 0), x̂3 =
(
γ, (γ − l)(K − γ)

)
,

and x̂3 ∈ R2
+ if and only if l < γ < K. The Jacobi matrix for our system is

f ′(x) =

[
(2x− l)(K − x)− x(x− l)− y −x

y x− γ

]
.

Analysis of the eigenvalues yields that x̂0 is an asymptotically stable node, x̂1 is an unstable node if
l > γ, otherwise it is a saddle with the unstable manifolds on x-axis, x̂2 is an asymptotically stable
node if K < γ, otherwise it is a saddle with stable manifolds on x-axis. The Jacobi matrix at x̂3 takes
the form

f ′(x̂3) =

[
γ(K + l − 2γ) −γ

γ(K + l − γ)−Kl 0

]
,

which implies that

trf ′(x̂3) = γ(K − 2γ + l), detf ′(x̂3) = γ
(
γ(K − γ + l)− lK

)
.

Therefore, if γ > (l +K)/2 then x̂3 is asymptotically stable. If γ = (l +K)/2 =: γb, then

trf ′(x̂3) = 0, detf ′(x̂3) =
(K + l)(K − l)2

8
,

2Kuznetsov, I.A. (1998). Elements of applied bifurcation theory (Vol. 112). Springer.
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and I have a non-hyperbolic equilibrium with purely imaginary eigenvalues. It is easy to check the
first condition for the Poincaré–Andronov–Hopf bifurcation:

dµ

dγ
(γ)

∣∣∣∣
γ−γb

=
1

2

d trf ′(x̂3)

dγ

∣∣∣∣
γ=γb

= −K − l ̸= 0.

Somewhat tedious calculations lead to

L1(γb) = − 1

ω0

√
2
√
K + l

4(K − l)
,

which proves that the bifurcation is supercritical (note that ω0 = detf ′), with appearance of a unique
stable limit cycle (see the figure).
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Figure 3: The limit cycle in Example 5
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